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Abstract The growth of a two-dimensional liquid jet is modelled, in which an inviscid incompressible fluid is
in irrotational flow. On the moving free surface, the pressure is constant. The flow is symmetric with respect to the
y-axis. The free-surface fluid particle that lies on the y-axis is Q and it has position y = Y (t). A velocity potential
is presented that describes the local features of the flow near the centreline, and which contains essentially two
unknowns: the velocity V (t) = dY/dt of Q, and a length L(t). Near Q the free surface is a time-dependent parabola,
whose curvature is directly proportional to a third unknown, F(t). The kinematic and dynamic free-surface boundary
conditions constrain V, L and F to satisfy three ordinary differential equations. The solutions are a one-parameter
family that separate into five types. For one type the free-surface curvature changes sign during the motion, so that
the free surface changes from concave to convex—it executes flip-through. Soon after flip-through, there is a local
maximum in the pressure, with respect to time and space. A short time later there is a maximum in the acceleration
of Q. As t tends to infinity, V tends to a constant, V∞. An estimate is made of the time scale for flip-through, based
on pressure changes, and it is found to decrease as V∞ increases. When V∞ is chosen very large, the values of the
large maxima in pressure and acceleration become sensitive to small changes in the initial conditions. The results
focus on the highly transient pressure field. The findings may help to describe the flip-through of a steep fronted
water wave meeting a plane impermeable wall.
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1 Introduction

The free surface of a liquid jet can move violently in several physically important settings. In the past, detailed
computations of the free-surface flow of water waves breaking against a fixed vertical wall revealed the existence
of narrow ascending jets with accelerations exceeding thousands of g. A jet emerges near the wall and ascends.
An explanation of the very violent flow associated with such jets became a pre-occupation of Howell Peregrine
until the end of his life. See for example Cooker and Peregrine [1] and Tuck [2]. Computations and analysis of jets
arising from symmetric standing waves have also been reported by Longuet-Higgins [3] and Longuet-Higgins and
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Dommermuth [4]. These flows can accompany high transient pressures within the fluid domain. In order to under-
stand the high transient forces that breaking water waves exert on structures, we need to quantify the time-dependent
pressure distribution on the solid boundary.

Shaped-charge devices are extreme examples of jets which are highly accelerated, and which attain high speeds
of flight. Shaw et al. [5] photographed a jet travelling at 9,000 m/s along the axis of a conical charge only 0.06 m in
diameter. The shaped charge was first modelled mathematically by Taylor [6]. A more detailed treatment is given by
Birkhoff et al. [7]. Taylor modelled the flow that arises after the jet has emerged and lengthened enough for the neck
and shoulder regions of the jet to be in steady flow. Steadily flowing jets are discussed in texts, e.g. [8, Chap. 9] and
[9, Chap. 8]. But what conditions of unsteady flow prevail in the early stages of emergence of the shaped charge?
It is during these earliest stages that the highest fluid pressures, (and the greatest rates of surface strain and relative
displacement) are found. Cooker [10] has modelled the pressures at these earliest times of jet growth.

The influence of gravity in a jet that is falling under gravity, due to the Rayleigh–Taylor instability of an initially
flat surface, is modelled by Duchemin et al. [11] and Duchemin [12]. They found that the tip of the jet has a slightly
greater downward acceleration than g and that the tip curvature increases directly proportional to t3.

Soon after the impact of a liquid drop, or a liquid wedge falling onto a plane rigid target, there are jets which
emerge and spread quickly over the solid surface of the target. The jets are a source of difficulty in the analysis
and computation of the flow. The fluid domain near the site of impact is greatly extended by the flow in the jet,
and there are high velocities and accelerations of thousands of g to be accounted for in the early stages of motion.
A computational difficulty in discretising the free surface is that small parts of the fluid domain quickly become
elongated. Fluid particles that mark the computational free-surface position can become widely separated, and the
free surface (and its velocity field) may become unacceptably poorly resolved.

Jets also occur during the entry of a solid body into water which is initially at rest. Contributions have been
made to the theory of deep-water entry by Howison et al. [13], Fraenkel and McLeod [14] and by Semenov and
Iafrati [15]. Deep-water entry is characterized by splash jets which ascend the sides of an impermeable body. By
contrast, in sufficiently shallow water, the splash jets become detached from the body, because the root of each jet
is swept away by the fluid that is forced out of the gap between the body and the bed. Korobkin [16] and Howison
et al. [17] have accounted for this theoretically in two dimensions. Self-similar two-dimensional and axisymmetric
flows for a crater collapsing and filling, in deep water, have been reported by Borisova et al. [18] and Zeff et al.
[19]. Three-dimensional detached splashes have been computed by Roisman and Tropea [20] and Korobkin and
Scolan [21]. The jet made by a collapsing enclosed cavity has been analysed by Longuet-Higgins and Oguz [22],
who modelled the flow outside the cavity as that induced by a point sink traversing the interior of the cavity.

Recently Korobkin and Yilmaz [23], have modelled the early stages of flow when water is released from rest in
a dam break: a jet emerges near the bed. A splash jet is made by the movement of a wavemaker or the wall of a
container in the presence of gravity. King and Needham [24] showed, using small-time asymptotics, that a vertical
section of wall, moving horizontally from rest with uniform acceleration into water, also initially at rest, induces
an ascending splash-jet whose width and vertical displacement both grow from zero. The problem solved by King
and Needham [24] involves an initial fluid domain which is a quarter-plane. A similar, but gravity-free flow, has
been analysed by Shu [25], in which a uniformly accelerated wall moves into a fluid domain which is initially
a truncated wedge of fluid at rest. Needham et al. [26] have treated the free-surface movement generated by an
inclined accelerating plate, with gravity and surface tension, in water of fixed initial depth.

In this work we take a simple velocity potential that describes a local converging velocity field beneath a moving
liquid surface. The velocity potential contains two functions to be determined. One function, Y (t), is the position of
the fluid particle Q on the y-axis of symmetry of the free surface, and the second function is a positive length scale
L(t). The upward velocity of Q is V (t) = dY/dt . The dynamic free-surface boundary condition suggests that the
free-surface shape near x = 0 is approximately parabolic, and the parabola is parameterised by Y (t) and a further
time-dependent shape factor, F(t), which is the third function to be determined. The dynamic condition also forces
V and L to satisfy two ordinary differential equations (ODEs) coupled with F . The kinematic boundary condition
implies that F satisfies a third ODE which is coupled with V and L . The fourth condition is V = dY/dt . In the
presence of gravity the dynamical system has one non-zero equilibrium point. A linear stability analysis gives a

123



The flip-through of a plane inviscid jet with a free surface 139

solution corresponding to standing waves of small amplitude. In the gravity-free limit, we solve a simplified system
for V , L and F . There is a one-parameter family of solutions (parametrised by F(0)), which show distinct types of
physical behaviour. We comment on the changes in the free-surface shape and the pressure distribution, particularly
the high local maximum in pressure encountered in one type. We classify the solutions and identify some jet-like
motions. The theory is valid for a fluid domain which extends from the free surface to y = −∞, and both |x |/L
and |F |x2/L must be small enough for our power series to be valid approximations on the free surface. If we think
of the y-axis as a vertical impermeable wall, then the theory describes the especially violent flow after the impact
of a water wave against the wall.

We are most interested in the early development of the jet, while it is emerging with high acceleration. Compared
with the pressure differences associated with the inertia of the flow, we can neglect capillary pressure differences
across the free surface. For this reason we impose the condition that the fluid pressure vanishes at the free surface.

The results from this paper show that flows with unbounded acceleration are possible, but to achieve such flows
the initial conditions must be specified with great precision. In practice there is a relatively narrow interval of the
parameter F(0) for which the peak pressure is as high as that encountered in wave impact experiments.

Some motivation for the starting point of the analysis below is two observations about the kind of velocity
potential commonly encountered in water-wave studies. First, the velocity potential,

φ = φ0 exp(k[y − Y ]) cos(kx),

is a solution of Laplace’s equation, even if φ0, k and Y are all functions of time. Secondly the unit of velocity
potential equals the unit of the coefficient φ0, which is a speed V (t) times a length L(t). As explained in the
sequel, it turns out to be kinematically necessary to choose V (t) = dY/dt , (which in turn forces φ0 = V/k), and
algebraically convenient to write k(t) = 1/L(t).

The paper is organised as follows. The formulation of the governing differential equations, including gravity, is
developed in Sect. 2. The solutions for gravity-free flows are worked out in parametric form in Sect. 3. In Sect. 4 we
present some illustrative calculations and in Sect. 5 we draw together the conclusions.

2 Analysis

2.1 Preliminary analysis

The fluid is inviscid and incompressible with constant density ρ. The two-dimensional velocity field is irrotational
and it is described by a velocity potential φ(x, y, t), where x, y are the usual Cartesian coordinates in an inertial
frame of reference specified below, and t is time. A fluid particle, Q, lies on the free surface on the vertical line
of symmetry which we impose on both the velocity and the initial fluid domain. The initial upward velocity of Q
is V0

∗, where a starred quantity is dimensional. We take a time-dependent length scale, L∗(t), which is initially
L0

∗, associated with the distance over which the velocity field varies significantly from V0
∗. This leaves us free to

choose arbitrarily the initial radius of curvature of the free surface at Q, discussed below.
The time t∗ is scaled with respect to L∗

0/V ∗
0 and the pressure is scaled with respect to ρV0

∗2. With respect to
these dimensionless quantities, we consider the following dimensionless velocity potential, whose functional form
was suggested by the observations at the end of the Introduction,

φ(x, y, t) = V (t)L(t) exp([y − Y (t)]/L(t)) cos(x/L(t)), (1)

where the dimensionless (unstarred) variables are x = x∗/L∗
0, y = y∗/L∗

0, the position of Q is y = Y = Y (t), the
speed of Q up the y-axis is dY/dt = V (t) = V ∗(t∗)/V0

∗ and L(t) = L∗(t)/L0
∗. These scalings force the initial

data to be L(0) = 1, Y (0) = 0 (without loss of generality), and V (0) = 1. The fluid domain extends from the free
surface down to y = −∞, where the fluid is at rest. In the following the x-coordinate will be restricted such that
|x/L(t)| is small, so that in this sense the solution (1) is only local. But we will have within the fluid an unrestricted
range for y from the free surface to y = −∞.
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Velocity potentials, different from (1) may also give rise to jet-like flows using the method discussed in this
paper.

The fluid velocity is ∇φ = ui + vj, where, according to (1), the dimensionless velocity components are

u(x, y, t) = −V exp([y − Y ]/L) sin(x/L), (2)

v(x, y, t) = V exp([y − Y ]/L) cos(x/L). (3)

In Eq. (2), on x = 0, we have u = 0 and so the y-axis is a line of symmetry of the flow, and it is the axis of the jet.
The point Q is at x = 0, y = Y (t), and at Q (3) gives us v = V (t) = dY/dt , so at Q the free-surface kinematic
condition is satisfied. We anticipate the free surface passing through Q: the free surface is described by

y = Y (t) + η(x, t),

where we constrain η to vanish at x = 0. (The function η(x, t) is expressed below, in (9).)
In (2) and (3), as y → −∞, the velocity components tend to zero exponentially quickly, if and only if L(t) > 0.

In this sense the frame of reference in which (1) is expressed, is that of the water far below the free surface. Such
an exponential decrease in u and v, as y → −∞, is found in the linear theory of water waves in deep water.

2.2 The free-surface position and the dynamic boundary condition

In dimensionless form Bernoulli’s equation for the pressure, p, is

p = −φt − 1
2 (u2 + v2) + Fr−2(Y − y) + p∞(t), (4)

where the Froude number Fr = |V0
∗|(gL0

∗)−1/2, the acceleration due to gravity is g. Also p∞(t) is a function of
time such that, when Fr−2 = 0, it equals the pressure at y = −∞. The specification of p∞(t) can be regarded as a
far-field boundary condition. From (1) we find that

p =
([

V 2 − d(LV )

dt
+ V

dL

dt

(y − Y )

L

]
cos

( x

L

)
− V

dL

dt

x

L
sin

( x

L

))

× exp

(
y − Y

L

)
− 1

2 V 2 exp

(
2(y − Y )

L

)
− Fr−2(y − Y ) + p∞. (5)

For points near Q, |x/L| � 1 and |y − Y |/L � 1. A Taylor-series expansion of (5) about Q gives

p =
(

p∞ − d

dt
(LV ) + 1

2 V 2
)

− (y − Y )

(
dV

dt
+ Fr−2

)

+ x2

2L2

(
L

dV

dt
− V

dL

dt
− V 2

)
+ (y − Y )2

2L2

(
V

dL

dt
− L

dV

dt
− V 2

)

+ x4

4!L4

(
3V

dL

dt
− L

dV

dt
+ V 2

)
+ x2(y − Y )

2L3

(
L

dV

dt
− V

dL

dt
− V 2

)

+ O([y − Y ]3/L3, [y − Y ]2x2/L4, [y − Y ]x4/L5, x6/L6). (6)

Now p = 0 on the free surface, which lies at y = Y + η(x, t), so that (6) gives

0 =
(

p∞ − d

dt
(LV ) + 1

2 V 2
)

− η

(
dV

dt
+ Fr−2

)

+ x2

2L2

(
L

dV

dt
− V

dL

dt
− V 2

)
+ η2

2L2

(
V

dL

dt
− L

dV

dt
− V 2

)

+ x2η

2L3

(
L

dV

dt
− V

dL

dt
− V 2

)
+ x4

4!L4

(
3V

dL

dt
− L

dV

dt
+ V 2

)

+ O(η3/L3, η2x2/L4, ηx4/L5, x6/L6). (7)
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At Q we have x = 0 and η = 0, and the pressure is zero, so the first term on the RHS of (7) must vanish. Hence

d

dt
(LV ) − 1

2 V 2 = p∞(t). (8)

Suppose, for a moment, that η/L and x/L are of the same order of magnitude. Then the lowest-order term on
RHS (the right-hand side) of (7) is the second term. So at first-order dV/dt = −Fr−2. Therefore Q can move upward
but with only constant deceleration, i.e., in free-fall, which is uninteresting. Besides, if η is directly proportional to
x , the free surface is a straight line and not jet-like.

We now reconsider the RHS of (7) and assume that the second and third terms balance each other, so that η is
directly proportional to x2. Then the other terms displayed in (7) are O(x4/L4) and therefore negligible for small
|x |/L . Then the symmetric free surface position must have the form

y = Y + η(x, t) = Y + x2 F(t) + O(x4/L4), (9)

where F(t) is a new unknown in the theory. At O(x2/L2) in (7) we find that

2FL2 dV

dt
+ 2FL2Fr−2 + V

dL

dt
− L

dV

dt
+ V 2 = 0. (10)

2.3 The free-surface kinematic condition

The kinematic condition on y = Y + η(x, t) is

V + ηt + φxηx = φy . (11)

With the help of definition (9), we make a Taylor-series expansion about Q, for suitably small Fx2/L , so that (11)
becomes

V + x2 dF

dt
− 2xFV(1 + Fx2/L + O(F2x4/L2))(x/L + O(x3/6L3))

= V (1 + Fx2/L + O(F2x4/L2))(1 − x2/2L2 + O(x4/24L4)), (12)

which implies

x2

L2

(
L2 dF

dt
− 3FLV + V

2

)
+ O(x4L−4) = 0.

Hence at O(x2/L2) we must have

dF

dt
= 3FV

L
− V

2L2 . (13)

Equations (8), (10), (13) and dY/dt = V are four coupled ordinary differential equations for V, L , F, Y . We
recast these equations into the form of a dynamical system by eliminating first dL/dt from (8) and then dV/dt from
(10):

dV

dt
= 3V 2 + 2p∞

4L(1 − FL)
+ Fr−2

(
FL

1 − FL

)
, (14)

dL

dt
= p∞(1 − 2FL) − 1

2 V 2(1 + 2FL)

2V (1 − FL)
− Fr−2 FL2

V (1 − FL)
, (15)

dF

dt
= 3FV

L
− V

2L2 , (16)

dY

dt
= V, (17)

where FL �= 1. In this set of equations there is no explicit dependence on Y so Eq. (17) is needed only to find Y
from V and (14–16) is a system of three equations in the three unknowns V, L , F .

123



142 M. J. Cooker

The fluid domain is a semi-infinite vertical strip from the free-surface downwards, so that y ≤ Y (t) + Fx2. We
have assumed that |x |/L is small, and we assume that F(t) and L(t) are such that |F |x2/L � 1. Since we are
interested in motions for which F passes through 0, and because L is positive, we can be confident of some time
interval during which |F |x2/L � 1. This last condition is violated if L decreases to zero.

There is one equilibrium point for the system (14–17). This lies at V = 0, Y = 0, F = 0, and L = 1. This
corresponds to static fluid with a plane horizontal free surface. There are small-amplitude oscillations about the
equilibrium point. In order to be able to carry out a linear stability analysis we must desingularize the right-hand side
of (15) at V = 0 by choosing p∞ = 2Fr−2 F . Then the linear solution with respect to small values of ε, is such that
the displacement of Q is Y = ε sin ωt , its velocity is V = εω cos ωt , the positive length scale L = 1 − 1

4εω cos ωt ,
and the free-surface curvature function F = − 1

2ε sin ωt . Consequently, the quantity p∞ = −Fr−2ε sin ωt . Also
the dimensionless dispersion relation is ω2 = Fr−2.

This linear solution corresponds to a standing water wave whose free surface (in dimensionless quantities) is
y = ε sin ωt cos kx . Here k equals the time-average of L−1, namely unity. So the familiar dimensional dispersion
relation ω∗2 = gk∗ is the same as ω2(V ∗

0 /L∗
0)

2 = g/L∗
0, which is the dimensionless relation ω2 = Fr−2.

The full dynamical system (14–17) is complicated by the function p∞(t), which must be chosen as part of the
far-field boundary conditions. From now on we choose p∞(t) = 0, so that the pressure in (5) decreases to zero
exponentially quickly as y → −∞. Hence the nett fluid force on the y-axis is finite. The system (14–17) is also
made complicated by gravity, through the Froude-number dependence of the coefficient Fr−2 in (14) and (15).
From now on we study the large-Froude-number limit appropriate to very violent motions in which the free-surface
particle acceleration V ∗

0
2/L∗

0 is much greater than g so that Fr−2 is negligible. Hence we have a dynamical system
for V, L and F :

dV

dt
= 3V 2

4L(1 − FL)
,

dL

dt
= − V (1 + 2FL)

4(1 − FL)
,

dF

dt
= V (6FL − 1)

2L2 . (18, 19, 20)

The initial conditions are V (0) = 1, L(0) = 1, and F(0) = F0, which can take any real value not equal to unity.
So this problem has only one parameter, F0. In the next section we solve the system of equations, and we end this
section with a comment on the above procedure.

The above model equations were derived for a limited set of unknowns, by expanding, in powers of x and y,
the dynamic and kinematic boundary conditions. This procedure might (incorrectly) be thought to be equivalent to
taking a general velocity potential

φ(x, y, t) = a0(t) + a1(t)[y − Y ] + a2(t)(x2 − [y − Y ]2) + a3(t)([y − Y ]3 − 3x2[y − Y ]) + · · · , (21)

where ∂φ/∂x = 0 at x = 0. Here each term satisfies Laplace’s equation, and has a coefficient ai (t) to be determined.
However, such an approach fails because the system of equations for {ai (t)} cannot be closed: one always has more
unknowns than conditions at every order of truncation.

3 Solutions

3.1 Expressions for V, L , F, Y, t in terms of parameter w

Equations (18) to (20) are a nonlinear autonomous dynamical system. We will eliminate t and then find V, L and
F in terms of a parameter w = FL. At the end we will find t and Y in terms of w by using (17).

Dividing (20) by (19) we have

dF

dL
= 2(6FL − 1)(FL − 1)

L2(1 + 2FL)
, (22)

in which the prevalence of FL prompts us to substitute F = w/L . Equation (22) implies
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L
dw

dL
= 14w2 − 13w + 2

2w + 1
, (23)

which is a separable differential equation. At t = 0, L(0) = 1, and so thinking of w as a function of time, we have
w(0) = F0, for the lower limit of integration in

log |L| =
∫ w

F0

2w′ + 1

14(w′ − a)(w′ − b)
dw′, (24)

where we define the roots of the quadratic in the numerator of (23) as

a = 13 + √
57

28
= 0.733923 and b = 13 − √

57

28
= 0.194649.

Evaluating the integral by partial fractions gives us the parametric solution for L(w):

L(w) =
∣∣∣∣ w − a

F0 − a

∣∣∣∣
q1

∣∣∣∣ F0 − b

w − b

∣∣∣∣
q2

, (25)

where F0 �= a, F0 �= b and w �= b, and we define the constants

q1 = 1

14
+ 27

142(a − b)
= 0.326874, q2 = − 1

14
+ 27

142(a − b)
= 0.184017.

Since F = w/L , we have also

F(w) = w

∣∣∣∣ F0 − a

w − a

∣∣∣∣
q1

∣∣∣∣ w − b

F0 − b

∣∣∣∣
q2

. (26)

By dividing (18) by (19) and carrying out a similar analysis, we obtain

V (w) =
∣∣∣∣
(

F0 − a

w − a

) (
w − b

F0 − b

)∣∣∣∣
q3

, (27)

where initially w = F0 and V = 1, and where q3 = 3
14(a−b)

= 0.397360.
We anticipate the discussion below with a pair of results. If F0 : 0 < F0 < b or F0 > 1 then as |w| → ∞, (27)

implies that V tends to a constant V∞, where

V∞ =
∣∣∣∣a − F0

b − F0

∣∣∣∣
q3

. (28)

This equation allows us to choose F0 so as to achieve a given positive value of V∞. Inverting (28) gives

F0 = bV∞1/q3 − a

V∞1/q3 − 1
.

We complete the set of parametric solutions by expressing Y and t in terms of w. Dividing (17) by (18) gives us

dY

dV
= 4(1 − w)L(w)

3V (w)
, (29)

and we can use the w-derivative of the logarithm of (27) to write dV/V in terms of dw and w. Separating out the
variables of Eq. (29), and integrating, gives

Y = 2|F0 − b|q2

7|F0 − a|q1

∫ w

F0

w′ − 1

|w′ − a|1−q1 |w′ − b|1+q2
dw′, (30)

in which the exponents 1 − q1 = 0.6730 and 1 + q2 = 1.184 are positive, and the limits are such that at t = 0,
Y (0) = 0 and w = F0. From (17) and (30) the time t is related to w by

t = 2|F0 − b|q2+q3

7|F0 − a|q1+q3

∫ w

F0

w′ − 1

|w′ − a|1−q1−q3 |w′ − b|1+q2+q3
dw′, (31)

where the displayed exponents 1 − q1 − q3 = 0.2758 and 1 + q2 + q3 = 1.581 are positive.
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For the RHS of (31) to be time-like we must arrange for w to belong to an interval, I , with F0 at one of
the end-points of I . Also w must either increase or decrease from F0 in such a way that t increases from zero. The
integrand of (31) has a singularity at w = a, which is also a singularity for F and V in finite time. In (31) the
exponent 1 + q2 + q3 = 1.581 is greater than one, so the singularity at w = b is not integrable. Hence we may only
let w move away from b, on the same side of b as that on which F0 lies, in order that t ≥ 0.

The above considerations help us to identify four types of interval, I , which capture all the admissible real values
which might be chosen for F0, not equal to a or b:

(i) If F0 : F0 > 1 then I = [F0,∞), in which w is increasing from F0 and t : 0 ≤ t < ∞;
(ii) If F0 : a < F0 < 1, then I = (a, F0], where w decreases from F0 to a, and t : 0 ≤ t < T , where T > 0 is

finite;
(iii) If F0 : b < F0 < a, then I = (b, F0], in which w is decreasing from F0 towards b, and t : 0 < t < ∞;
(iv) If F0 < b then I = (−∞, F0] in which w is decreasing from F0 and t : 0 ≤ t < ∞.

All the above intervals are extended in obvious ways to obtain t < 0.
Both of the integrals in (30, 31) can be written in terms of Incomplete Beta Functions, but these are slow to

evaluate, even by computer. It is more useful (in support of the later analysis) to approximate them with elementary
functions. We are particularly interested in case (iv), when F0 < b, and w′ ≤ b. In (31) the integrand has the factor
(a − w′)−1+q1+q3 , which is a very slowly varying function of w′ < b, compared with the other factors. So we
expand it in a series of powers of (b − w′). As w′ tends to −∞ the integrand of (31) tends to zero in a way that is
well-approximated by (1−w′)q1−q2−1. Integrating the sum of these two asymptotic terms gives us an approximation
with a relative error of less than four per cent for the working range of w < b:

t ≈ 2(b − F0)
q2+q3

7(a − F0)q1+q3

(
1 − b

(q2 + q3)(a − b)q4

[
1

(b − F0)q2+q3
− 1

(b − w)q2+q3

]

+ 1

q1 − q2
[(1 − w)q1−q2 − (1 − F0)

q1−q2 ]
)

. (32)

where q4 = 1 − q1 − q3. A similar treatment of (30) gives an approximation for Y :

Y ≈ 2(b − F0)
q2

7(a − F0)q1

(
1 − b

q2(a − b)1−q1

[
1

(b − F0)q2
− 1

(b − w)q2

]
+ α

q1 − q2
[(β − w)q1−q2 − (β − F0)

q1−q2 ]
)

,

(33)

where α = 0.6 and β = 4 were found (by trials) to give a relative error of less than six per cent spread conveniently
over the range of w : 25 < w < b used in the results for this paper.

Figure 1 shows V (t) plotted using (27), and (32) for V∞ = 2 and 4. The plot shows that the acceleration is briefly
large and that V tends more quickly to V∞ when V∞ = 4 than for V∞ = 2.

3.2 Classification of solutions

We have found that L changes only a little from unity as t → ∞, so we ignore results for L and plot in Fig. 2 a
projection of the three-dimensional V, F, L phase space onto the V, F plane. In Fig. 2 all of the phase trajectories
begin at the start line V = 1, each with its own value of F0. As time increases V changes monotonically from unity,
so one can ‘read’ along each phase curve.

Depending on the value of F0, the solutions fall into Types I to V, defined as follows:

Type I. If F0 > 1 then V decreases from unity as t increases, according to (25) and (27), L → ∞ and F → ∞.
Physically, the two halves of the free surface, on either side of Q, close slowly towards each other. While
this occurs Q slows down to a constant speed given by (28). See the dotted curves in Fig. 2.

Type II. If F0 : a < F0 < 1, then w decreases towards a, with increasing t < T . As t → T we have L → 0, F →
∞ and V → ∞. Physically, the two halves of the free surface clap together in a finite time, which from
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Fig. 1 The velocity, V , of the nose Q of the jet, plotted as a function of time. As t → ∞, V → V∞. The curves are drawn for
· · · V∞ = 2 and – – – V∞ = 4

(31) is approximately T = 2(1−a)(F0 −b)r/(7r [a −b]r+1), where r = q2 +q3. The trajectories of Type
II fly off the upper right corner of Fig. 2. These have little physical relevance because of the vanishing (as
L → 0) of the range of x within which the approximations are valid.

Type III. If F0 : b < F0 < a, then, as w decreases towards b, with ever increasing t , we have L → ∞, F → 0 and
V → 0. Physically, the free surface moves ever slower and becomes ever flatter. In Fig. 2 the trajectories
(solid curves) converge on the origin.

Type IV. If F0 : 0 < F0 < b then F initially increases, to a maximum positive value, and then decreases. Then F
changes sign from positive to negative. As t → ∞, F tends to −∞, and V increases to a finite limiting
value of V∞ > 1.695 as given by (28). The long dashed curves in Fig. 2 are the trajectories that cross the
V -axis, and these correspond to flip-through.

Type V. If F0 < 0 then F tends to −∞, and L → ∞, while V is increasing from unity to a limiting value V∞ > 1
given by (28). These limiting conditions are approached as t → ∞. Type V corresponds to a jet whose
free surface starts convex and stays convex. The jet curvature at Q tends to −∞, and V increases to some
value of V∞ between 1 and 1.695. These are the dash-dot curves in the lowest part of Fig. 2.

The importance of Type IV lies in the change in sign of F . Hence the curvature, 2F , at Q changes sign, and so the
free surface parabola passes from concave to convex. In Type IV solutions, the free surface executes flip-through. In
Fig. 2, three Type IV curves are drawn, showing F changing sign. Figures 3 and 4 show examples of flip-through.
The parabolic free surface is shown at several times as Q accelerates upward and the free surface changes from
concave to convex.

The rarity of Type IV, among the flows discussed here, reflects how special the initial conditions must be to
bring about a flip-through. A similar sensitivity has been reported by experimentalists. There are records of field
measurements of thousands of consecutive waves meeting a seawall where none registers a significant pressure,
before one incident wave possesses the right conditions to make a high-pressure impact. Sensitivity to incident wave
conditions was reported for example, in the wave-tank experiments of Bagnold [27]. He generated disturbances
that were close to solitary waves, with the aid of a carefully controlled paddle wavemaker. In [27, p. 211] Bagnold
states that the conditions to achieve an impact were so critical that: “an alteration of but 0.2% in the paddle timing
was sufficient to make the pressures disappear altogether.” He also commented on the influence of free-surface
roughness which can increase or diminish the peak pressures. Such irregular wave features at the waterline could
alter significantly the free-surface curvature.

So far we have investigated all real values of F0 �= 1, except F0 = a (which is the border between Types II and
III) and F0 = b (the borderline case between Types III and IV). For these values the parametric solution method
fails because FL = w does not then describe a time-like variable. Instead FL is a constant which equals F0 (= a or
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Fig. 2 Solution curves in the V, F plane, Eqs. (26) and (27). At t = 0, V = 1 and F = F0 where F0 parametrizes the solutions.
Results for −0.27 < F0 < 1.42 only are drawn. Each curve begins at the initial line V = 1, from which the curve can be read forward
in time. From top to bottom of the plot the curves are: · · · for Type I solutions, F0 > 1, for which V decreases as t increases. Curves
– – – are Type II in which F0 : a < F0 < 1, where a = 0.733923: here the two halves of the free surface clap together in finite time.
Curves — are Type III solutions F0 : b < F0 < a (where b = 0.194649) and these slowly approach the origin. Curves — — — are
Type IV, flip-through, solutions, for F0 : 0 < F0 < b, where F changes sign. Curves – · – · – are for Type V solutions, F0 < 0, in
which F remains negative and the free surface is convex for t > 0

b only). The system (18–20) then possesses a similarity solution such that F = F0V s where s = (1 + 2F0)/3 and
where

V =
(

1 − t

T

)−3/(4+2F0)

where T = 2(1 − F0)

2 + F0
. (34)

The expression for V is valid for t : 0 ≤ t < T , but V and F are singular at the critical time t = T . In this flow as
t → T we find that L = F0/F → 0 and Y → YT = 4(1 − F0)/(1 + 2F0).

Physically the two halves of the free surface come together above Q, and this happens while Q rises a finite
distance from y = 0 to y = YT . For time t < T the maximum pressure rises without bound, but the model breaks
down at t = T and it is unable to predict any of the probably very violent flow conditions for t ≥ T . These two
self-similar solutions rely on particular values of F0, and so are of little importance in the continuum of results
within each of the Types I–V.

Since they correspond to flip-through, in the rest of the paper we concentrate on Type IV solutions F0 : 0 <

F0 < b. As w passes through zero, from positive to negative values, Eq. (26) shows that F also passes through zero
from positive to negative. Hence the free surface changes from a concave crater into a convex jet. The expression
(25) shows that L decreases slowly from unity, and V increases continually towards V∞, as w tends to −∞ in
Eq. (27). By choosing F0 close to b, Eq. (28) shows that V∞ can be made very large.
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3.3 The free surface: its motion and change of shape

So far we have treated the motion as an initial-value problem but we are free to consider time t < 0 too. It has been
shown that the exact result (26) gives us the shape factor, F , in the expression for the free surface y = Y (t)+F(t)x2.
For Y we have Eq. (30), which depends (through F0) on the chosen value of V∞. For Y → −∞, (i.e., t → −∞)
we find that F > 0 and decreasing to zero. So the free surface is concave and close to flat for sufficiently large and
negative Y (or t).

As t increases from −∞, Y increases monotonically from −∞ to ∞, and V increases monotonically from zero
to V∞; see Fig. 1. In (26) and (27), as w increases to b we have F increasing from zero to a positive maximum, and
then later decreasing. The local maximum in F occurs when dF/dt = 0, which is equivalent to dF/dw = 0, and
this implies that w = 1/6, uniquely. Hence the local maximum value of F for Type IV motion is

Fmax = 1

6

∣∣∣∣ a − F0

a − 1/6

∣∣∣∣
q1

∣∣∣∣b − 1/6

b − F0

∣∣∣∣
q2

. (35)

When w = 1/6, Eqs. (27, 28) show that the value of V has increased to 0.3025 V∞. The maximum in F corresponds
to the instant that the radius of curvature R = 1/(2F) of the concave free surface at Q achieves its smallest value Rmin

equal to (2Fmax)
−1. After this instant the free surface becomes less concave, and then becomes momentarily flat,

when F and w both vanish. This is the instant of flip-through. It occurs when V = V f = V∞[b/a]q3 = 0.5901 V∞.
At later times the free surface is convex with a jet-like shape and ascent. The nose of the jet has ever greater
convex curvature as time goes on. Figures 3 and 4 show the flip-through of the free surface for two values of V∞.
For V∞ = 4 in Fig. 4, the transition is quicker and produces a sharper jet than for the case V∞ = 2 drawn in
Fig. 3.

As t tends to infinity we have w → −∞ in (26) and (31) and from these we find that the curvature 2F is asymp-
totically directly proportional to t7(1−q1−q2) where 7(1 − q1 − q2) = 3.423. Duchemin et al. [11] and Duchemin
[12] found that for jets drawn downwards by gravity, the tip curvature is asymptotically proportional to t3.

After flip-through, V carries on increasing towards V∞. On the way, two more important events occur, which
we discuss next: first a peak in the spatial maximum in pressure and a little later the maximum acceleration of the
nose of the jet.

3.4 The time-dependent pressure distribution

In the problem of wave impact we can replace the y-axis by an impermeable wall and consider first the pressure
distribution at x = 0. On the y-axis, below Q, Eq. (6) gives the pressure as

p(0, y, t) = (Y − y)
dV

dt
− (Y − y)2

2L2

(
L

dV

dt
− V

dL

dt
+ V 2

)
+ O

(
Y − y

L

)3

,

where y ≤ Y . Using (18–20), we may simplify this to

p(0, y, t) = V 2

1 − w

(
3(Y − y)

4L
− (1 − 1

4
w)

(Y − y)2

L2

)
+ O

(
Y − y

L

)3

. (36)

For any one value of F0, at any fixed time t , the pressure on the y-axis has a spatial maximum of magnitude
pmax(t). This maximum lies at a position that we denote y = ymax. Elementary algebra gives

ymax = Y (w) − 3L(w)

8 − 2w
, (37)

and

pmax = 9

8(1 − w)(8 − 2w)

(
b − w

a − w

)2q3
(

a − F0

b − F0

)2q3

. (38)

123



148 M. J. Cooker

Fig. 3 Flip-through: motion of the parabolic free surface for
V∞ = 2. The surface accelerates up and flips through when the
surface is instantaneously flat. Times shown: t = 0 (lowermost
curve) to t = 1.0 (uppermost curve), in time-increments of 0.1.
The x- and y-axes are scaled the same

Fig. 4 As Fig. 3: free-surface positions for V∞ = 4. The surface
flips-through when it is instantaneously flat. Times shown: t = 0
(lowest curve) to t = 1.0 (uppermost curve), in time-increments
of 0.1. The x- and y-axes are scaled the same

For fixed F0 the global maximum value of pmax occurs when the w-derivative of (38) vanishes. This turns out to
imply that w must satisfy a cubic equation, the one root of which that is less than b is w = wp = −0.229155,
independent of F0. The corresponding maximum of pmax(t), which we call the ‘peak pressure’, is denoted ppk,
where

ppk = 0.05637
(a − F0)

2q3

(b − F0)2q3
= 0.05637 V∞2. (39)

The peak pressure tends to infinity as V∞ tends to infinity, and this occurs as F0 increases to b, corresponding to a
critical initial radius of curvature R = Rc = 1/(2b) = 2.569.

Equation (37) gives us the vertical distance, D, from the position of maximum pressure up to the point Q on the
free surface:

D(w) = Y − ymax = 3

8 − 2w

(
a − w

a − F0

)q1
(

b − F0

b − w

)q2

. (40)

At the time of peak pressure, w = wp, and the corresponding value of D is Dp where:

Dp = 0.4103
(b − F0)

q2

(a − F0)q1
. (41)

Equations (39) and (41) show that as F0 tends to b from below, ppk tends to infinity and Dp tends to zero.
In Fig. 5 the pressure distribution on the y-axis is plotted at several times for V∞ = 4 (corresponding to

F0 = 0.1776, which is slightly less than b = 0.1946). At the right-most point of the pressure distribution the
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Fig. 5 The pressure distribution on the y-axis at several instants. The spatial maximum in pres sure is at a point y = ymax which ascends
(moves to the right in this plot). The point where p = 0, at the right-hand end of each curve, coincides with the instantaneous position
of the free surface on the y-axis. The spatial maximum pressure, pmax, attains its greatest value, ppk, for one of the curves plotted. This
plot is made for V∞ = 4, for which ppk = 0.9019. In dimensional units ppk = 0.9019 ρV ∗

0
2, where V0

∗ is the dimensional initial speed
of P. Times shown are t = 0 (leftmost curve) to t = 0.9 (rightmost curve), in time-increments of 0.1, and for t = 0.5739 which is the
instant of peak pressure

Fig. 6 Contour map of the pressure from (42), in the x, y-plane, at the instant of peak pressure, for V∞ = 4. The pressure distribution
is symmetric about the y-axis. The contours drawn are p = 0 [0.05] 0.90, where p = 0 is the outermost contour. The x- and y-axes are
scaled the same. The thick uppermost curve is the parabolic free surface. This is close to the contour p = 0 for −0.3 ≤ x ≤ 0.3, which
indicates the interval of x within which the approximations made are accurate

pressure is zero at Q and Q advances to the right. As time increases, the local spatial maximum in pressure increases
to its temporal maximum and later decreases. In this example the peak pressure is ppk = 0.9019. In starred,
dimensional units this pressure is ppk

∗ = 0.9019ρV0
∗2, where V0

∗ is the dimensional initial speed of Q, and
V∞∗ = 4V0

∗.
Figure 6 shows the pressure distribution in x, y-space at the instant of peak pressure, for V∞ = 4. The local

maximum is prominent and coincides with the highest curve of pressure drawn in Fig. 5. In (6) the pressure is
approximated by terms quadratic in the coordinates. Using (18–20), we may write (6) as follows,

p = V 2(4 − w)

4(1 − w)

(
3w

(4 − w)

x2

L2 −
[

Y − y

L
− 3

8 − 2w

]2

+ 9

(8 − 2w)2

)
, (42)

where V, Y, L are known functions of w. The time of greatest maximum pressure coincides with w = wp =
−0.229155, and for this instant contours of constant pressure from (42) are plotted in Fig. 6. The figure also shows
the instantaneous free-surface position. The free surface is close to the p = 0 contour for x : −0.3 < x < 0.3, and
within this interval the theory provides an adequate approximation.

As time goes on, the pressure distribution in (x, y) space changes its character. While the free surface is con-
cave (w > 0 in (42)), the pressure contours are hyperbolas and the stationary point in pressure is a saddle point
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(a maximum with respect to y and a minimum with respect to x). Mid-way through flip-through when F = 0 (and
w = 0) the pressure contours are instantaneously horizontal. Only thereafter, when the surface becomes convex
(w < 0), does the pressure possess a local maximum in space, and the maximum is surrounded by elliptical contours.

For values of V∞ greater than four, both pmax and ymax are larger. In the unsteady flow the term −φt in Bernoulli’s
equation (4) contributes positively to the pressure at any point, whereas the term − 1

2 v2 can only act relatively to
reduce the pressure.

Can we find a time scale tF for the flip-through process? Suppose t1 is the instant at which the spatial maximum
in pressure, pmax(t), has increased to 1

2 ppk, and that t2 is the later instant at which pmax has decreased to 1
2 ppk.

(The two maxima are separated in space as well as time, as indicated in Fig. 5; the pressure at a fixed point may
double and halve in a time much shorter than t2 − t1.) We define the flip-through time as tF = t2 − t1. From (38)
and (39) we find that the above instants correspond to particular values of w, which are w = w1 = 0.130398 for
t1, and w = w2 = −1.8360 for t2. Equation (32) gives

tF = t2 − t1 = 2.365
(b − F0)

q2+q3

(a − F0)q1+q3
. (43)

Equations (28) and (43) show that tF decreases as V∞ increases. We deduce that the larger the value chosen for
V∞, the more violent is the flow, in the sense that the maximum acceleration is greater and the peak pressure is
higher (and the significant pressure is exerted over a shorter time-interval).

It has been suggested that the peak pressure might coincide with the time of maximum acceleration of Q. Long-
uet-Higgins [3] found a flow possessing an inertial shock in which free-surface acceleration and the maximum
pressure pass through singularities simultaneously. However, for the present class of flows, the peak pressure occurs
a short time before the maximum acceleration. A straightforward calculation shows that Q has maximum accelera-
tion dV/dt when w = wA = −0.30902. This is less than wp = −0.229155, hence the greatest acceleration is later
than the peak pressure. The maximum acceleration is

dV

dt

∣∣∣∣
max

= 0.3695
(a − F0)

2q3−q1

(b − F0)2q3−q2
. (44)

4 Discussion

The formula (39) suggests that high pressures can be associated with relatively small values of V0
∗, provided V∞

is large enough. Suppose a water jet accelerates from an initial speed of V0
∗m/s to an ultimate speed of V∞∗m/s.

This comes from a flow where the peak pressure, in N/m2, is

ppk
∗ = 0.05637 ρV ∗

0
2 V ∗∞2

V ∗
0

2 = 0.05637 ρV ∗∞
2
, (45)

where the choice of F0 for the initial free surface y∗ = F0x∗2/L0
∗, is related to the value of V ∗∞ = V ∗

0 ((a −
F0)/(b − F0))

q3 .
We consider a numerical example in which the velocity field varies on a length scale equal to a certain significant

thickness or wavelength scale of water, say L0
∗ = 0.1 m for a laboratory-scale wave. Then a velocity scale (based

on deep-water linear wave theory) is V0
∗ = √

gL0
∗ = 1 m/s. Now suppose the initial radius of curvature of the free

surface at Q is R∗ = 0.2570 m, so that the dimensionless value of F0 = L0
∗/(2R∗) = 0.1945. Then V∞ = 30.41.

The peak pressure is then ppk
∗ = 52 130 N/m2, which is about half atmospheric pressure—not unusual for impacts

at this laboratory scale. When V∞ = 30.41, Eq. (44) the maximum acceleration is dV ∗/dt∗ = 601.5 m/s2, which
is sixty g. (Although Fr−2 = 1 for the initial data of this example, the acceleration dV/dt greatly exceeds Fr−2, in
(14) and (15), throughout the period of the key events of flip-through.)

Now suppose we repeat the calculation, but with a 0.1 mm reduction in the choice of the initial radius of curvature:
suppose R∗ = 0.2569 m. This increases F0 to the upper limit for Type IV flip-through flows, of F0 = 0.1946 = b,
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for which V∞ is singular, and hence in (30) ppk
∗ and the acceleration are singular. This shows some extreme

sensitivity of the peak pressure to the choice of initial conditions.
Flip-through occurs in a time of t∗F = tF L∗

0/V ∗
0 seconds. Taking the earlier example, in which L0

∗ = 0.1 m,
V ∗

0 = 1 m/s, and R∗ = 0.2570 m, we have V∞ = 30.41, so that (43) gives t∗F = 0.00311 s. Twice t∗F is an estimate
of the duration of the significant pressure ‘spike’ on a record of the pressure as a function of time at a fixed point
on the y-axis. Here 2t∗F = 6.2 ms, which is at the high end of the range of reported laboratory measurements of
impact time, for water waves at this scale. Figure 5 shows that at a fixed value of y the pressure can rise and fall
much quicker than the time scale for the changes in pmax. So it is not surprising that 2tF is longer than the duration
of a typical pressure spike measured at a fixed point in an experiment. See [28] for a discussion of the impact time
at different scales of water waves in both salt and fresh water.

5 Conclusions

A time-dependent velocity potential for two-dimensional flow has been shown to have local properties suitable for
describing the emergence and growth of an inviscid liquid jet, in the absence of gravity or surface tension. By taking
one half of the symmetric domain, the model equally well describes the frictionless advance of a liquid spreading
over an impermeable plane surface, with a contact angle of ninety degrees. The family of Type IV solutions is
parameterised by F0, or equivalently by the long-time asymptotic speed of the jet nose V∞ > 1.695, for which the
free surface is a parabola that changes from concave to convex. This resembles the flip-through behaviour observed
in some previous wave-splash computations.

The sequence of physically important events for a Type IV flow is as follows. As t → −∞ the free surface is flat.
As t increases, Q accelerates, the free surface becomes concave, and the radius of curvature 1/(2F) at Q decreases
from infinity to a local minimum given by (35). Next the radius of curvature increases to infinity as the free surface
becomes flat. The surface is subsequently convex, and it has now flipped through. Next the spatial maximum in
pressure pmax reaches its highest value of ppk given by (39). The position of this peak pressure is close to Q, and
the separation distance is given by Eq. (41). A little after the time of peak pressure, the acceleration of Q reaches its
maximum, as given by Eq. (44). As t → ∞ the velocity of Q approaches V∞, the acceleration decays to zero, the
local maximum pmax in pressure declines towards zero, and the convex free surface at Q has ever higher curvature
directly proportional to t3.423.

If we make the flow more violent by choosing ever larger V∞ (i.e., choosing F0 ever closer to b), then the flip-
through time decreases towards zero, and both the peak pressure and the maximum acceleration increase without
bound.

Further investigations are underway for nonzero Fr−2 and p∞. The technologically important problem of an axi-
symmetric jet, can be treated using the present method. Let r be the radial distance from the y-axis of axisymmetry.
The paraboloidal free surface is locally y = Y (t) + r2 F(t) and the local velocity potential in cylindrical polars is

φ(r, y, t) = V (t)L(t)J0(r/L(t)) exp([y − Y (t)]/L(t)), (46)

where J0 is the Bessel function of order zero, and the functions of time in (46) are different from those found in the
present paper.
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